首页 >
> 详细

COMP2521: Assignment 2

Social Network Analysis

A notice on the class web page will be posted after each major revision. Please check the class notice

board and this assignment page frequently (for Change Log). The specification may change.

FAQ:

You should check Ass2 FAQ, it may offer answers to your queries!

Change log:

No entries as yet!

Objectives

to implement graph based data analysis functions (ADTs) to mine a given social network.

to give you further practice with C and data structures (Graph ADT)

Admin

Marks 20 marks (scaled to 14 marks towards total course mark)

Individual

Assignment

This assignment is an individual assignment.

Due 08:00pm Friday 22 November 2019

Late

Penalty

2 marks per day off the ceiling.

Last day to submit this assignment is 8pm Monday 25 November 2019, of course

with late penalty.

Submit TBA

Aim

In this assignment, your task is to implement graph based data analysis functions (ADTs) to mine a given

social network. For example, detect say "influenciers", "followers", "communities", etc. in a given social

network. You should start by reading the Wikipedia entries on these topics. Later I will also discuss these

topics in the lecture.

Social network analysis

Centrality

The main focus of this assignment is to calculate measures that could identify say "influenciers",

"followers", etc., and also discover possible "communities" in a given social network.

Dos and Don'ts !

Please note that,

For this assignmet you can use source code that is available as part of the course material (lectures,

exercises, tutes and labs). However, you must properly acknowledge it in your solution.

All the required code for each part must be in the respective *.c file.

You may implement additional helper functions in your files, please declare them as "static"

functions.

After implementing Dijkstra.h, you can use this ADT for other tasks in the assignment. However,

please note that for our testing, we will use/supply our implementation of Dijkstra.h. So your

programs MUST NOT use any implementation related information that is not available in the

respective header files (*.h files). In other words, you can only use information available in the

corresponding *.h files.

Your program must not have any "main" function in any of the submitted files.

Do not submit any other files. For example, you do not need to submit your modified test files or

*.h files.

If you have not implemented any part, must still submit an empty file with the corresponding file

name.

.

Provided Files

We are providing implementations of Graph.h and PQ.h . You can use them to implement all three parts.

However, your programs MUST NOT use any implementation related information that is not available in

the respective header files (*.h files). In other words, you can only use information available in the

corresponding *.h files.

Also note:

all edge weights will be greater than zero.

we will not be testing reflexive and/or self-loop edges.

we will not be testing the case where the same edge is inserted twice.

Download files:

Ass2_files.zip

Ass2_Testing.zip

Part-1: Dijkstra's algorithm

In order to discover say "influencers", we need to repeatedly find shortest paths between all pairs of

nodes. In this section, you need to implement Dijkstra's algorithm to discover shortest paths from a given

source to all other nodes in the graph. The function offers one important additional feature, the function

keeps track of multiple predecessors for a node on shortest paths from the source, if they exist. In the

following example, while discovering shortest paths from source node '0', we discovered that there are

two possible shortests paths from node '0' to node '1' (0->1 OR 0->2->1), so node '1' has two possible

predecessors (node '0' or node '2') on possible shortest paths, as shown below.

We will discuss this point in detail in a lecture. The basic idea is, the array of lists ("pred") keeps one

linked list per node, and stores multiple predecessors (if they exist) for that node on shortest paths from a

given source. In other words, for a given source, each linked list in "pred" offers possible predecessors for

the corresponding node.

Node 0

Distance

0 : X

1 : 2

2 : 1

Preds

0 : NULL

1 : [0]->[2]->NULL

2 : [0]->NULL

Node 1

Distance

0 : 2

1 : X

2 : 3

Preds

0 : [1]->NULL

1 : NULL

2 : [0]->NULL

Node 2

Distance

0 : 3

1 : 1

2 : X

Preds

0 : [1]->NULL

1 : [2]->NULL

2 : NULL

The function returns 'ShortestPaths' structure with the required information (i.e. 'distance' array,

'predecessor' arrays, source and no_of_nodes in the graph)

Your task: In this section, you need to implement the following file:

Dijkstra.c that implements all the functions defined in Dijkstra.h.

Part-2: Centrality Measures for Social Network Analysis

Centrality measures play very important role in analysing a social network. For example, nodes with

higher "betweenness" measure often correspond to "influencers" in the given social network. In this part

you will implement two well known centrality measures for a given directed weighted graph.

Descriptions of some of the following items are from Wikipedia at Centrality, adapted for this assignment.

Closeness Centrality

Closeness centrality (or closeness) of a node is calculated as the sum of the length of the shortest paths

between the node () and all other nodes () in the graph. Generally closeness is defined as below,

where is the shortest distance between vertices and .

However, considering most likely we will have isolated nodes, for this assignment you need to use

Wasserman and Faust formula to calculate closeness of a node in a directed graph as described below:

where is the shortest-path distance in a directed graph from vertex to , is the number of nodes that can

reach, and denote the number of nodes in the graph.

For further explanations, please read the following document, it may answer many of your questions!

Explanations for Part-2

Based on the above, the more central a node is, the closer it is to all other nodes. For for information, see

Wikipedia entry on Closeness centrality.

Betweenness Centrality

The betweenness centrality of a node is given by the expression:

where is the total number of shortest paths from node to node and is the number of those paths that pass

through .

For this assignment, use the following approach to calculate normalised betweenness centrality. It is

easier! and also avoids zero as denominator (for n>2).

where, represents the number of nodes in the graph.

For further explanations, please read the following document, it may answer many of your questions!

Explanations for Part-2

Your task: In this section, you need to implement the following file:

CentralityMeasures.c that implements all the functions defined in CentralityMeasures.h.

For more information, see Wikipedia entry on Betweenness centrality

Part-3: Discovering Community

In this part you need to implement the Hierarchical Agglomerative Clustering (HAC) algorithm to

discover communities in a given graph. In particular, you need to implement Lance-Williams algorithm,

as described below. In the lecture we will discuss how this algorithm works, and what you need to do to

implement it. You may find the following document/video useful for this part:

Hierarchical Clustering (Wikipedia), for this assignment we are interested in only "agglomerative"

approach.

Brief overview of algorithms for hierarchical clustering, including Lance-Williams approach (pdf

file).

Three videos by Victor Lavrenko, watch in sequence!

Agglomerative Clustering: how it works

Hierarchical Clustering 3: single-link vs. complete-link

Hierarchical Clustering 4: the Lance-Williams algorithm

Distance measure: For this assignment, we calculate distance between a pair of vertices as follow: Let

represents maximum edge weight of all available weighted edges between a pair of vertices and .

Distance between vertices and is defined as . If and are not connected, is infinite.

For example, if there is one directed link between and with weight , the distance between them is . If

there are two links, between and w, we take maximum of the two weights and the distance between them

is . Please note that, one can also consider alternative approaches, like take average, min, etc. However,

we need to pick one approach for this assignment and we will use the above distance measure.

You need to use the following (adapted) Lance-Williams HAC Algorithm to derive a dendrogram:

Calculate distances between each pair of vertices as described above.

Create clusters for every vertex , say .

Let represents the distance between cluster and , initially it represents distance between vertex and

.

For k = 1 to N-1

Find two closest clusters, say and . If there are multiple alternatives, you can select any one

of the pairs of closest clusters.

Remove clusters and from the collection of clusters and add a new cluster (with all vertices

in and ) to the collection of clusters.

Update dendrogram.

Update distances, say , between the newly added cluster and the rest of the clusters () in the

collection using Lance-Williams formula using the selected method ('Single linkage' or

'Complete linkage' - see below).

End For

Return dendrogram

Lance-Williams formula:

where , , , and define the agglomerative criterion.

For the Single link method, these values are: , , , and . Using these values, the formula for Single link

method is:

We can simplify the above and re-write the formula for Single link method as below

For the Complete link method, the values are: , , , and . Using these values, the formula for Complete link

method is:

We can simplify the above and re-write the formula for Complete link method as below

Please see the following simple example, it may answer many of your questions!

Part-3 Simple Example (MS Excel file)

Your task: In this section, you need to implement the following file:

LanceWilliamsHAC.c that implements all the functions defined in LanceWilliamsHAC.h.

Assessment Criteria

Part-1: Dijkstra's algorithm (20% marks)

Part-2:

Closeness Centrality (22% marks),

Betweenness Centrality (23% marks)

Part-3: Discovering Community (15% marks)

Style, Comments and Complexity: 20%

Testing

Please note that testing an API implementation is very important and crucial part of designing and

implementing an API. We offer the following testing interfaces (for all the APIs you need to implement)

for you to get started, however note that they only test basic cases. Importantly,

you need to add more advanced test cases and properly test your API implementations,

the auto-marking program will use more advanced test cases that are not included in the test cases

provided to you.

Instructions on how to test your API implementations are available on the following page:

Testing your API Implementations

Submission

You need to submit the following five files:

Dijkstra.c

CentralityMeasures.c

LanceWilliamsHAC.c

Submission instructions on how to submit the above five files will be available later.

Plagiarism

This is an individual assignment. Each student will have to develop their own solution without help from

other people. You are not permitted to exchange code or pseudocode. If you have questions about the

assignment, ask your tutor. All work submitted for assessment must be entirely your own work. We regard

unacknowledged copying of material, in whole or part, as an extremely serious offence. For further

information, read the Course Outline.

联系我们

- QQ：99515681
- 邮箱：99515681@qq.com
- 工作时间：8:00-23:00
- 微信：codinghelp

- Comp201作业代做、Software Engineering作业代写、J 2019-12-07
- Comp3322a作业代做、代写modern Technologies作业、 2019-12-07
- Cse315留学生作业代写、代做software Engineering作业 2019-12-07
- 代写cse403留学生作业、代做java程序语言作业、System课程作业代 2019-12-07
- Cse-381作业代做、代写canvas留学生作业、代做c++语言作业、C+ 2019-12-07
- Stat 315作业代写、Linear Relationship作业代写、代 2019-12-07
- Cs602留学生作业代做、代写programming课程作业、代做pytho 2019-12-07
- Math5714作业代做、代写linear Regression作业、R编程 2019-12-07
- Ista 116作业代写、Data留学生作业代做、代写r程序设计作业、R语言 2019-12-07
- 代做data留学生作业、代写r编程语言作业、代做r课程设计作业代写r语言编程 2019-12-07
- Sehs3321作业代做、代做web，Html编程语言作业、代写networ 2019-12-07
- Stat2005作业代写、代做r编程设计作业、代写programming课程 2019-12-07
- 代做data Set作业、代写python，Java编程语言作业、代做c/C 2019-12-07
- Cis 212留学生作业代做、代写c/C++编程设计作业、代做c/C++语言 2019-12-06
- 代做csi 403留学生作业、Data Structures作业代写、代做j 2019-12-06
- 代做bpi889留学生作业、代写r编程语言作业、R课程设计作业代做、Data 2019-12-06
- 代写website留学生作业、代做python程序设计作业、代写python 2019-12-06
- Comp201作业大写、代做software Engineering作业、代 2019-12-06
- Game Srs作业代做、代写linux Platforms作业、Java编 2019-12-06
- 代写stat 462/862作业、代做python编程设计作业、代写java 2019-12-06