首页 > > 详细

讲解 Algorithms and Data Structures (ADS2) Assessed Exercise 2辅导 留学生Java程序

Algorithms and Data Structures (ADS2)

Assessed Exercise 2

This exercise is for submission using Moodle and counts for 10% of the total assessment mark for this course.

This exercise is worth a total of 20 points.

The deadline for submission is Monday 24 March 2025 at 4:30pm.

Exercise

This exercise has two parts. In the first part, you are asked to implement in Java an ADT, and define an efficient algorithm to solve a practical problem in the second part.

Submission

Submit the Java sources of your implementations and a short (maximum 3 pages) report briefly describing what you have done in each part of the exercise. Your report should include clear instructions on how to run your code.

Part 1

The Dynamic Set is an abstract data type (ADT) that can store distinct elements, without any particular order. There are five main operations in the ADT:

•    ADD(S,x): add element x to S, if it is not present already

•    REMOVE(S,x): remove element x from S, if it is present

•    IS-ELEMENT(S,x): check whether element x is in set S

•    SET-EMPTY(S): check whether set S has no elements

•    SET-SIZE(S): return the number of elements of set S

Additionally, the Dynamic Set ADT defines the following set-theoretical operations:

•    UNION(S,T): return the union of sets S and T

•    INTERSECTION (S,T): return the intersection of sets S and T

•    DIFFERENCE(S,T): returns the difference of sets S and T

•    SUBSET(S,T): check whether set S is a subset of set T

a)   Implement in Java the Dynamic Set ADT defined above using a binary search tree. Explain in the report your implementation, noting the running time of each operation. You can use a self-balancing binary tree but no extra marks will be awarded. Also, you are not allowed to rely on Java library classes in your implementation.                    [8]

b)   A naïve definition of UNION(S,T) for a BST-based implementation of the Dynamic Set ADT consists in taking all elements of BST S one by one, and inserting them into BST T. Describe in the report an implementation with a better running time.           [2]

Part 2

TheMin-priority Queue is an abstract data type (ADT) for maintaining a collection of elements, each with an associated value called a key. The ADT supports the following operations:

•    INSERT(Q,x): insert the element x into the queue Q.

•    MIN(Q): returns the element of Q with the smallest key.

•    EXTRACT-MIN (Q): removes and returns the element of Q with the smallest key.

a)   Implement an efficient algorithm in Java to solve the following problem:

You are given n ropes of different lengths (expressed as integers), and you are asked to connect them to form a single rope with the minimum cost. The cost of connecting two ropes is equal to the sum of their lengths.

Given  a  sequence  of rope  lengths,  the  expected  outputs  are  a  sequence  of rope connection operations and the total cost. Use your implementations of the Min-priority Queue ADT in your solution.                   [7]

b)   Give a brief description of your implementation, explaining why a priority queue is needed for an efficient algorithm.            [2]

c)   What is the output for this instance of the problem 4,8,3,1,6,9,12,7,2?                      [1]



联系我们
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 99515681 微信:codinghelp
程序辅导网!