首页 > > 详细

讲解 CIVE 3013 Steel and Timber Design辅导 数据结构语言

CIVE 3013 Steel and Timber Design

STATE DRILL CORE LIBRARY FACILITY

DESIGN BRIEF

1.  PROJECT BACKGROUND

The South Australian Drill Core Reference Library hosts geological samples recovered from over  130 years of exploration for minerals and energy resources in South Australia. These irreplaceable samples represent valuable direct records of the geological materials retrieved from the depths of the crust, which will continue to be investigated and analyzed by new generations of geologists in industry, research, education and government. The facility consists of three main areas, that vary in use and their design and construction methods; the hylogger, the library and the administration building.  The facility was constructed in 2015 as part of the Tonsley Redevelopment, Clovelly Park.

2.  PROJECT SCOPE

The scope of this project is to design and document some of the main structural roof and floor elements for the Administration Building of the State Drill Core Library Facility. The focus will be on the part of the building located between Grids AB and AE, A4 to A20 on Structural Drawings ST-101, ST-102, ST-302, ST-301, and Architectural Drawings A126 and A127.

Firstly, determine the design loads on the building (remember to consider the whole building for wind loads) and then design the structural framing members using steel and timber. The structural elements you will be designing are a roof beam, column, lateral bracing system, and connection detail (for bonus marks).

The following items are not in the scope of this project:

•   Any concrete elements including the design of the first-floor slab

•   Earthquake design

•   Fire resistance design

•   Ground floor slab or footing design

3.  DESIGN CONSTRUCTION - LIBRARY

a)  Ground exterior walls: Lightweight stud wall or glazing with aluminium composite façade panels supported on steel framed fascia trusses. Refer to Architectural drawing A200 for details.

b)  Roof: Metal sheeting with insulation under, on steel purlins and rafters as shown on the architectural drawings A300, A301, and section detail drawings (A620, A621, A622 and A623).

c)   The ground floor is an industrial raft slab on the ground with pad footings.

4.  PROJECT TEAM

For each design, you are required to work in a project team of three (3). Each team will be more effective in their effort to address the project scope in the time duration allowed than an individual. Let your tutor know your preferred group by the end of Week 2. All team members MUST be in the same timetabled design project session.

5.  PROJECT ASSESSMENT

This total design project is worth 35 % of the course assessment separated into 3 submissions.

Stage 1            Design Loads

Stage 2            Steel Member Design

Stage 3            Timber Member Design

The detail of the elements required to be designed by your team, the allocated marks and suggested completion dates are documented in the tables on the last pages of this brief.

6.  PEER ASSESSMENT

At the end of each submission stage of the design project, you are required to assess yourself and    your     group    members     using    the     online     peer    assessment     tool     SPARK. (https://unisa.sparkplus.com.au/login.php)   You  are required to  answer each of the criteria questions and provide written feedback of at least 10 words for EACH group member. The RPF factor from SPARK (along with tutor and lecturer observations) will be used to modify your group’s mark to give you an individual mark for each stage of the design project.

7.  DESIGN METHOD and SOFTWARE USE

The calculations should be typed. The calculations MUST be neat, tidy, legible, easy to follow and logically laid out.  You may use spreadsheets to make your calculations clear for repetitive iterations as long as the first iteration including all the formula and workings are typed.

You are to use the structural analysis software Spacegass to analyze the roof wind truss ONLY to obtain the design actions including the bending moments, shear forces, and axial loads for the roof wind truss/bracing members.  You must provide detailed calculations for how you arrived at the input data using a cover sheet for any computer output.  The cover sheet will detail all the input you have entered into the software including:

-     Dimensional information between grid lines and other setout information

-     Dead,  live,  and wind load cases are labeled. Load locations,  directions and values identified

-     Labeled member sizes and connection types i.e. pinned, roller, fixed, etc.

Spacegass is installed in the computer pools in Buildings F, N, and P. Also, a Spacegass student version can be installed for free on your own laptop/home IBM compatible PC, downloaded from the Spacegass website using this link:  http://www.spacegass.com/student

You will need to enter your student details (name and email) to confirm that you are a student. Please put Khoi Nguyen as the lecturer and email address is Khoi.Nguyen@unisa.edu.au

8.  ADDITIONAL DESIGN INFORMATION

Dead Loads

For the roof dead load, you will need to determine the self-weight of the sheeting, purlins, insulation, and ceiling.  For the mechanical and electrical services within the ceiling space, allow an additional dead load of 0.5 kPa. This is in addition to the dead load for the self-weight that you have calculated.

Tip: Apply the services dead load for the downward case only. Do not add the services dead load in combination with the upward wind load. The exact location of services is unknown; therefore we assume the most conservative loading conditions for both the downward and upward loads. For instance, the maximum dead load for downwards and minimum dead load are added to the upward loads from the wind combination.

Wind Loads

The building is located adjacent to South Road, Clovelly Park, South Australia.  The facility is located on the side of a hill so use the website NatureMaps to determine if topographic multipliers will affect the wind speed. The wind load will vary according to the geometry of the building.

Roof Beams

The  roof  sheeting   will  be   fixed  to  purlins  running   along  the  length  of  the  building (approximately north-south for the particular section we are designing).  They will be bolted to cleats (small plates) that are welded to the top flange of the roof beams hence providing lateral restraint to the top flange of these beams. Roof beams can be Universal Beam (UB) or Welded Beam (WB) sections bending about their major X axis. Long-span roof beams may be pre- cambered upwards to balance downward deflection. This should be considered in your design.

Columns

Structural columns are located at each end of the roof beams.  Columns can be constructed from  rectangular  hollow  sections  (RHS),  square  hollow  sections  (SHS),  or  Universal Beam/Column sections (UB/UC), or Welded Beam/Column sections (WB/WC).  The walls will provide buckling restraint under axial loads for any columns.

9.  RESOURCES and REFERENCES

All these resources are available through the course homepage

1.   Australian Standard AS/NZS 1170 Structural Design Actions

a.   AS/NZS 1170.0:2002 Part 0: General Principles

b.   AS/NZS 1170.1:2002 Part 1: Permanent, imposed and other actions

c.   AS/NZS 1170.2:2011 Part 2: Wind actions

2.   Australian Standard AS 4100: 1998 (R2016)  Steel Structures

3.   Australian Standard AS 1720.1:2010 Timber Structures Part 1: Design Method

4.   Structural Drawings

5.   Architectural Drawings

6.  NatureMaps Website

7.   Roof Sheeting Table, purlin and CHS / SHS information Sheets

8.   Hot Rolled and Structural Steel Products - Onesteel

9.   Timber: Standard Sizes Chart

Other useful references:

Gorenc, B., Tinyou, R. and Syam, A., Steel Designers’ Handbook, 8th  edition, UNSW Press, 2012


联系我们
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 99515681 微信:codinghelp
程序辅导网!