首页 > > 详细

讲解 MAED 5121 Algebra and Its Applications I Midterm Examination, Fall 2024辅导 Java编程

MAED 5121 Algebra and Its Applications I

Midterm Examination, Fall 2024

1. Let ~ be the relation defined on the set of integers Z by

n ~ m for n, m ∈ Z     if    n2  ≡ m2  mod 7;

i.e., n ~ m if n2  — m2  is a multiple of 7.

(a) Show that ~ is an equivalence relation.                                                                         [8 points]

(b) How many elements (equivalence classes) are in the quotient set Z/~? Why?                       [8 points]

(c) Is the operation  on Z/~ defined by [x]  [y] = [x+y] for [x], [y] ∈ Z/~ a well-defined binary operation on Z/~? Why?                                                                                                       [4 points]

(d) Is the operation ⊠ on Z/~ defined by [x] ⊠ [y] = [xy] for [x], [y] ∈ Z/~ a well-defined binary operation on Z/~? Why?                                                                                                       [5 points]

2. Consider the cycles σ = (356) and τ = (1357) in the permutation group S7 .

(a) How many distinct 7-cycles does S7  have?                                                                      [5 points]

(b) Express the permutation τ2  as a product of disjoint cycles.                                               [5 points]

(c) Express the permutation σ —1τ as a product of disjoint cycles.                                           [5 points]

(d) Find the order of the permutation (σ—1τ)360 .                                                                [5 points]

(e) Can you find a cycle P ∈ S7  such that P2  = (124)(356)? Show your work for full credit.           [5 points]

3. Let G be the set of 3 × 3 invertible real matrices, which is a group under matrix  multiplication. Let

(a) Show that  is not an abelian group.                                                                            [4 points]

(b) Prove that  is a subgroup of G , and determine if H is abelian or not.                              [7 points]

(c) Show that  = {A ∈  : AB = BA for all B ∈ } is a also a subgroup of . What kind of matrices are in ?                                                                                                              [7 points]

(d) In the left coset decomposition of  by the subgroup x , what are the elements in the left coset Cx ,

where

 

Is the left coset Cx a countable set, or uncountable set?                                                 [7 points]

4. Let f : G -→ H be a group homomorphism, and h : G -→ G is defined by h(x) = x2 . Prove the following:

(a) If G is abelian and f is surjective, then H is also abelian.                                                [8 points]

(b) If f(G) has n distinct elements, then xn  ∈ ker f for all x ∈ G.                                           [8 points]

(c) G is abelian if and only if h is a group homomorphism.                                                     [9 points]


联系我们
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 99515681 微信:codinghelp
程序辅导网!