首页 > > 详细

辅导 ELEC 6910G Amphibious Robot for Wetland Environmental Inspection辅导 C/C++语言

- ELEC 6910G -

Group Project: Amphibious Robot for Wetland Environmental Inspection

Project Overview:

Wetlands are unique ecosystems characterized by saturated soils, standing water, and dense vegetation, often serving as transitional zones between terrestrial and aquatic environments. They are rich in biodiversity and play crucial roles in water filtration, flood control, and car- bon storage. However, their soft, waterlogged terrain, combined with fluctuating water levels, makes traversal challenging.  The objective is to design and prototype an amphibious robot capable of operating in both terrestrial and aquatic environments for the purpose of Wetland Environmental Inspection.  Students will demonstrate principles of robotics, mechatronics, and engineering design by considering the inherent challenges under a specific operational set- ting for their robot design.

Task Specification:

To guide the design of your amphibious robot, we present a clearly defined task that your robot will address. Your robot design will be evaluated based upon the degree of comprehensiveness with respect to considering the challenges presented by the described task setting:

Preventing invasive species in wetlands is crucial to protect its native biodiversity, maintain ecosystem balance, and ensure the health of vital water resources. Your robot will be deployed and begin its operation on land, then undergo the following task phases.

1. Terrestrial Navigation: Reach the waterfront by traversing through 5 meters of uneven, soft terrain covered with dense marsh, by considering effective locomotion techniques. Expect that the path is covered by unstructured obstacles, including small rocks and vegetation masses.

2. Amphibious Transition: Successfully transition from the terrestrial to the aquatic envi- ronment. Note that wetlands typically have varying terrain slopes; As such, your robot must be able to descend a 1 meter shoreline with a slope of 10° (approximately 6H:1V) in a controlled manner to become fully waterborne.

3. Aquatic Navigation: Navigate to the designated underwater survey zone, which is po- sitioned 5 meters away from the shoreline.  Due to the rich aquatic vegetation found in wetlands, your robot must be able to effectively maneuver through volumes covered in water ribbons without getting entangled.

4. Invasive Species Identification: Within the survey zone, use imaging sensors integrated within your robot design to locate and identify invasive flora species.  A successful in- spection requires documentation.  Upon identifying the target, the robot must position itself stationary to capture a clear image for subsequent analysis.   Integrate adequate illumination equipment into your design to compensate for poor lighting conditions un- derwater.

5. Water Sample Collection: To get a better understanding of the environmental effects caused by the invasive species, your robot must also collect a water sample of 150mL, which will facilitate the analysis of water quality and discover the presence of pollutants.

6. Mission Egress and Return: After logging the evidence, the robot must safely egress the aquatic zone by navigating back to the shoreline and transition back to the terrestrial zone.

Project Details:

1. Research and Concept Development:

•  Investigate existing amphibious robots and their locomotion mechanisms.

•  Research power systems and waterproofing techniques for dual-environment oper- ation.

•  Research control systems and autonomous navigation algorithms.

•  Explore different types of sensors suitable for amphibious operation under the spec- ified task setting

2. Design Specifications - Create a comprehensive design plan for an amphibious robot for wetland environmental inspection purposes under the aforementioned task setting, by considering robotic components such as:

Locomotion system (wheel-propeller hybrid, leg-propeller system, etc.)

•  Degree of freedom and maneuverability requirements

Materials and components (waterproof motors, buoyancy control, sensors)

Imaging equipment (underwater light, camera)

Water sampling mechanisms

•  Control system architecture (micro controller, communication systems, algorithms)

•  Power management system for extended operation

3. Realization: Develop a proof of concept to realize your robot design.  The purpose of this is to validate your design concept.  You may choose to expand on any of the key components to demonstrate your robot design’s feasibility in the context of the presented task setting. This may involve:

Prototyping: Creating a CAD model of your proposed design, or developing a functional prototype using appropriate materials (3D printing, waterproof electron- ics, etc.); Integrating adequate sensors for data collection and or control systems for locomotion.

Programming: Developing control software for autonomous navigation, data ac- quisition, or path planning algorithms for efficient inspections.

4. Testing and Iteration (if possible): Testing and iteration are crucial steps in the robotics design process, enabling continuous improvement and refinement. If you have completed prototypes, we would love to see them in action. Demonstrate your robot design by:

•  Testing the maneuverability of your prototype in both terrestrial and aquatic envi- ronments.

•  Testing your prototype in a simulated environment mimicking the task description. Finally, consider ways in which you could iterate and improve your robot design.

Deliverables:

A detailed project report (no longer than 10 pages) including:

Research findings and literature review

Design specifications and rationale

Prototyping process and challenges (if applicable)

Control and Data collection algorithms (if applicable)

Testing methodology and results (if applicable)

•  A 15-minute presentation (Nov.26) followed by a short Q&A session to demonstrate your design and findings.

Submissions:

•  Submit your report (in PDF format) and presentation slides (in PowerPoint format) via Canvas by 11:59 PM, Nov 25 (Tuesday), one day before your presentation.

Evaluation Criteria:

•  Innovation and creativity in amphibious design

•  Practicality of the robot with respect to the challenges presented by the task setting

•  Completeness and integrity in design rationale for the robot

Quality of the report and presentation

Teamwork and collaboration

Important notes:

1.  Form a group of 3 students (by Oct.29) by joining the same group on Canvas→ People→Final Project. Students without a group until then, will be automatically assigned a group.

2.  One group only needs to submit one report (in PDF format) and one PPT file. In the re- port, please state the contribution of each member in the form of xx% by self-evaluation. For instance, member A:50%, B:30%, C:20%. If no self-evaluation is provided, we will give equal marks to all members in your group.

3.  For the sake of time, all students should use the computer in the classroom for their presentation.   Your PPT slides will be uploaded to the computer in the classroom in advance.

4.  The weight of the mark (Total 30%):

Report (15%)

PPT & Presentation (5% from us and 10% from your classmates)

A 15-minute presentation followed by a short Q&A to share your work with the class.

Each group will rank all the other groups except theirs.  Marks will be given based on the average ranking, i.e., 1st:  10 marks, 2nd: 9 marks, . . . .

References:

https://iowalearningfarms.wordpress.com/wp-content/uploads/2023/05/wetland-plant-zones.jpg

https://www.pliantenergy.com/robotics

https://www.youtube.com/watch?v=hQSdTFlYVSY

https://www.nature.com/articles/s41586-022-05188-w



联系我们
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 99515681 微信:codinghelp
程序辅导网!