首页 > > 详细

讲解 AAE5208 Satellite Engineering辅导 C/C++语言

GMAT Final Lab:

A Satellite Constellation for Peak-hour Traffic

Monitoring in Hong Kong

AAE5208 Satellite Engineering

Academic Year 2025/26

Lab Overview

Deadline: 10 December 2025

Group Size: 2 students

Deliverables: GMAT scripts + 6-page technical report, submission through Blackboard

1 Mission Statement

Your team is tasked with designing a satellite constellation to monitor vehicular traffic in Hong Kong during peak hours  (07:00—09:00  and 18:00—20:00 local time,  UTC+8).   The goal is to maximize coverage, spatial resolution, and cost-effectiveness for a minimum two-year operational lifetime. The target area is a 50 km × 50 km region centered on Hong Kong (22.3。N, 114.2。E). During each critical window, the system must provide at least two passes over the target area. The mission starts on 19 November 2025, 00:00:00 UTC+8.

2 Technical Requirements

2.1    Coverage and Mission Duration

The constellation must ensure daily coverage of the Hong Kong region during specified peak hours (07:00—09:00 and 18:00—20:00, Hong Kong Time), with a revisit rate of at least two passes per window. The mission should be designed for a minimum operational lifetime of two years.

2.2 Launch Constraints

All satellites will be launched from Hainan Wenchang Space Launch Center (19.6145。N, 110.9511。E, sea level) using the Changzheng-12 (CZ-12) launch vehicle. The CZ-12 can deliver up to 12,000

kg to a 200 km low Earth orbit (LEO), 10,000 kg to 300 km LEO, and 6,000 kg to 700 km LEO. For intermediate altitudes, use linear interpolation to estimate payload capacity.

2.3 Satellite Specifications

Each satellite must have a dry mass (excluding propellant) of 500 kg, with a total launch mass ranging from 1,000 kg to 4,000 kg. The propulsion system should provide a specific impulse of 320 seconds (bipropellant), resulting in a delta-V capability ranging from approximately 2,168 m/s to 6,511 m/s, depending on fuel load.

2.3.1 Propulsion System

Specific impulse  (Isp):  320 seconds (bipropellant system)

Delta-V capability:

                               (1)

where g0 = 9.81 m/s2

Minimum ∆V ≈ 2,168 m/s (1,000 kg total, 500 kg fuel)

Maximum ∆V ≈ 6,511 m/s (4,000 kg total, 3,500 kg fuel)

2.4    Performance Metrics

2.4.1 Spatial Resolution

The spatial resolution of a satellite imaging system determines the smallest distinguishable fea- tures on the ground. It is quantified by the ground sample distance (GSD), which represents the physical ground distance covered by one edge of a single pixel (assuming square pixels). For traffic monitoring applications, the spatial resolution must be sufficient to differentiate indi- vidual vehicles.  Therefore, the achieved spatial resolution should satisfy GSD 1.0 m.  The finer the resolution (smaller GSD), the better the system can distinguish between closely spaced vehicles and identify traffic patterns.  However, designing a lower altitude must consider the atmospheric drag effect. Please find a real-world satellite remote sensing camera and use it for your design. An extra requirement for the camera you use is that the attitude control capability is ±10  off-nadir pointing.

2.4.2 Swath

The swath of a satellite is the area on the ground that the satellite can scan and detect at one point in time.  Its dependency on the FoV is illustrated in Figure  1.   The swath width is the ground distance perpendicular to the satellite ground track, and the swath length is the ground distance parallel to the ground track.  For most Earth observation satellites, the swath width is designed to be longer than the swath length.  This is achieved by orienting the longer side of the camera sensor perpendicular to the orbital path, enabling the satellite to cover a larger area with each pass over the target region.  The swath area is the total ground area that the onboard instrument can capture in a single image.  Assuming the longer dimension is oriented perpendicular to the orbital path, the nadir-pointing swath width and length can be calculated as:

Wnadir = 2h · tan(θ)                                                                                                                    (2)

Lnadir = 2h · tan(θ) · pixel number of the shorter dimension/pixel number of the longer dimension      (3)

where h is the satellite altitude, θ is half-cone field of view of cameras.

2.5    Additional Constraints

2.5.1    Orbital Considerations

Atmospheric drag becomes significant below 300 km, so your altitude selection must be justified. Certain orbits, like the sun-synchronous orbit, provide more consistent lighting. You may assume adequate solar arrays and batteries.  However, it would be great if you could also consider the effect of the eclipse on the power budget, either in your design or by including it in your report for discussion.

Figure 1: Sensor field of view and swath.

2.5.2    Cost Factors (Relative Units)

Cost per satellite: Csat = 50 + 2 × mtotal  (million HKD, where m in tons)

Cost for launch:  Claunch  = 80, 000 HKD per kg (CZ-12 launch cost)

Total mission cost: Ctotal = mtotal × Claunch + nsats × Csat

You need to minimize this while meeting techinical requirements.

3 Deliverables

3.1 Part 1: GMAT Simulation Scripts (40%)

You need to provide one or more well-commented GMAT scripts demonstrating:  (1) Constella- tion Setup, including initial orbit parameters for all satellites, spacecraft properties (mass, fuel, propulsion), Propagator settings, etc., and (2) Orbit Insertion & Phasing, including launch ve- hicle ascent trajectory (simplified to parking orbit), inclination change maneuvers (if required), Orbit transfers  (if required), phasing maneuvers to establish constellation geometry, delta-V budget, etc.

3.2 Part 2: Technical Report (60%)

Maximum 6 pages (excluding title page and references), Single-line spacing, Times New Roman 12 point font, 2.5 cm all round. Please rename your file as ”Your name + student ID + GMAT Report”.

3.2.1 Required Sections

1. Executive Summary Briefly describe your constellation design, key performance metrics, and cost summary.

2. Constellation Design Rationale Justify your choices for orbit altitude, inclination, RAAN distribution, and others.  Explain the number of satellites and phasing strategy, using Walker notation i : t/p/f, if applicable.  Discuss trade-offs between resolution, coverage, and cost.

3.   Mission Analysis Outline your launch strategy, including the number of launches and payload distribution. Provide a breakdown of the delta-V budget for all maneuvers, if necessary, including orbit insertion, inclination changes, phasing, and station-keeping.  Analyze coverage performance, revisit times, access percentages, and any coverage gaps. Present achieved spatial resolution and swath width. Include ground track visualizations over Hong Kong.

4.  Results & Performance Metrics Summarize orbital parameters, mass and fuel alloca- tion, delta-V usage, resolution, swath width, and access statistics in a table. Provide a detailed cost analysis and compare your design against the mission requirements.

5. Optimization Discussion Discuss  alternative  designs  considered,  sensitivity  analysis (e.g., impact of adding or removing satellites), and potential future improvements.

6. Assumptions & Limitations List all assumptions, known limitations, and risk mitigation strategies.

Appendix (not counted in page limit) GMAT script. snippets (key sections only), Detailed calculation examples, Additional figures if needed, etc.

4    Grading Rubric

Category Points

Criteria

Part 1: GMAT Scripts

Script functionality 15

Completeness                       20

Script/code quality 5

Scripts run without errors, producing correct outputs, including visualizations like orbit views The required scenario implemented

Well-commented, organized, readable

Part 2: Technical Report

Result & performance 10

All objectives met under given constraints

Design justification 15

Clear rationale for constellation architecture

Mission analysis                  15

Thorough coverage, maneuver, and performance analysis, calculations preferred

Optimization 5

Evidence of trade-off analysis and optimization efforts

Technical accuracy 10

Correct calculations and physics

Presentation 5

Clear writing, professional figures, proper for- matting, including citations

Total 100

Remember: Real satellite engineering involves balancing conflicting requirements. There’s no single correct answer.  Your job is to justify your design choices with solid analysis and clear communication.  You are also encouraged to take into consideration other factors, such as the mission schedule, which have not been spec fied in the require-ments.





联系我们
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 99515681 微信:codinghelp
程序辅导网!