首页 > > 详细

讲解 The Common-Emitter Amplifier辅导 C/C++编程

Department of Electrical and Electrical Engineering

Experiment EC1                   The Common-Emitter Amplifier

Location: Part I Laboratory CYC – 102

Objective: To study the basic operation and analyze the characteristics of the common-emitter amplifier.

Apparatus:

HP E3611

DC Power Supply

× 1

HP 6116

A Pulse/Function Generator

× 1

HP 34401

A Multimeter

× 1

HP 54600

An Oscilloscope

× 1

Components:

Resistors:           150 Ω                                                          ×  1

1 kΩ,                                                          × 1

2 kΩ                                                            × 2

4.7 kΩ                                                          × 1

10 kΩ                                                          × 1

Capacitor:          0.033 μF                              × 2

                        1 μF,                                    × 1

                         2.2 μF                                 × 2

                        10 μF                                  ×  1

Transistor:         2N3904 NPN transistor             ×  1

Others:               A breadboard                         × 1

Reference:

A. S. Sedra and K. C. Smith, Microelectronic Circuits, 5th Edition, Oxford Press, 2004

Useful Formulas

Voltage gain from base to collector

(1)

(2) (normal circuit)

(3) (no load)

(4) (no bypass capacitor)

Transistor AC-emitter resistance (at room temperature)

(5)

Quiescent DC-base voltage

(6)

Quiescent DC-emitter voltage

(7)

Quiescent DC-emitter current

(8)

Quiescent DC-collector voltage

(9)

Quiescent DC-collector-emitter voltage

(10)

Amplifier-input impedance

(11)

Voltage gain in dB

(12)

Frequency response due to the input coupling capacitor C1

( 13) where RG = signal source impedance

Frequency response due to the bypass capacitor C2

(14)

Frequency response due to the output coupling capacitor C3

(15)

Preparation:

1. Before coming to the laboratory, run the PSPICE simulator  to analyze the circuit in this

experiment. Obtain the simulation results for Tables 1 – 7 and complete sketches 1-5.

2.   Derive Equations 2, 3, 4, 11, 13, 14 and 15.

3.   Suppose a resistor R is inserted between the signal generator and C1. Derive a relation between Vin and the AC voltage at point B.

Procedures:

1. Wire the circuit shown in Fig. 1 on the breadboard provided. Do not connect the signal generator and the power supply to the circuit yet!

2.   Check all connections. Apply the 15-V supply voltage. Use the DMM to individually measure the transistor DC-base voltage VB, emitter voltage VE and collector voltage VC  with  respect to the ground. Record the results into Table  1. Based  on the resistor values in Fig.  1, calculate the expect values of these three voltages using Eqns. 6, 7 and 9, assuming a base-emitter voltage drop of 0.7 V. Complete Table 1.

3.   Using the measured value for the DC-emitter voltage VE  obtained in  Step 2, calculate the DC- emitter  current IEQ  using  Eqn.  9  and  the  transistor  AC-emitter  resistance re    using  Eqn.  5. Complete Table 2.

4.   Connect Channels  1 and 2 of the oscilloscope to points I (vin ) and point O (vout ), respectively, of the circuit in Fig.  1. Then connect the signal generator to the circuit and adjust the sine wave output level of the generator to 0.02 V p-p (peak-to-peak) at a frequency of 5 kHz. Measure the actual p-p  output voltage  out  v  and  the p-p  input  voltage vin, calculate the  voltage  gain by dividing vout  by vin, and the expected value using Eqn. 2. Record them in Table 3. Sketch the output voltage waveform. in Sketch 1.

5.   Slowly increase the amplitude of v in to obtain the maximum symmetrical vout without getting any clipping on the output waveform. Measure the p-p values of vin  and vout, and then calculate the gain. Also, calculate the expected values using Eqn. 2. Record them in Table 3. Sketch the output waveform. in Sketch 2.

6.   Increase the amplitude of vin  in Step 5 by about 20%. Measure the p-p values of vin  and vout, and then calculate the gain. Also calculate the expected value using Eqn. 2. Record them in Table 3. Sketch the output waveform. in Sketch 3.

7.   Remove RL.  As  in  Step  4,  experimentally  determine  the  voltage  gain  by measuring the p-p voltages of vin and vout, and calculate the expected value using Eqn. 3. Record them in Table 3.

8.   Reconnect the 2-kΩ resistor as in the original circuit of Fig.  1. Remove the  10-μF emitter bypass capacitor from the circuit. As in Step 7, experimentally determine the voltage gain and calculate the expected value using Eqn. 4. Complete Table 3.

9.   Reconnect the 10-μF emitter bypass capacitor as in the original circuit of Fig. 1. Keep vin  at 0.02V (p-p). Vary the frequency of the input signal as indicated in Table 4 and measure vout  at each frequency. Plot the frequency response in Sketch 4. (Alternately, you can use PSPICE to generate the plot and then plot the measured values on the same figure.) Record the lower and upper 3-dB frequencies in Table 4.

10. Adjust  the  output  level  of the  signal  generator  to vin   =  0.02  (p-p)  at  50kHz. Measure vout. Determine the voltage gain of the amplifier in dB using Eqn. 12 and the expected voltage gain in dB using Eqns. 2 and 12. Complete Table 5.

11. In order to determine the amplifiers low frequency 3-dB point due to C1  only, replaced C1  with a

0.033 μF capacitor. Adjust the signal generator to give vin  = 0.02 V (p-p) at 50 kHz. Measure vout. Slowly reduce the  frequency  of the  input  signal until vout   drops to  0.707  (i.e.  1/ ·、 )  of that measured at 50 kHz input frequency. Record the frequency (f 1) at which this occurs in Table 6. Calculate the expected value using Eqn.  13, assuming β =150 for the 2N3094 transistor, and record it in Table 6. Replace C1 with the original 2.2 μF capacitor.

12. Replace C2   with  a   1-μF  capacitor  and  repeat  the  procedures  outlined  Step   11. Record the measured value off2  in Table 6. Calculate the expected value using Eqn.  14 and record it in Table 6. Replace C2 with the original 10-μF capacitor after the measurement.

13. Replace C3  with a 0.033-μF capacitor and repeat the procedures outlined in Step 11. Record the measured value off3  in Table 6. Calculate the expected value using Eqn.  14 and record it in Table 6.

NB when you use PSPICE to get the values for steps 11-13, you can first plot the frequency response for each case and then get the 3-dB frequency from the plot.

Figure 1



联系我们
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 99515681 微信:codinghelp
程序辅导网!