首页 > > 详细

辅导 MLE5247 AY24/25 SEM 2 Assignment 2讲解 Python语言

MLE5247 AY24/25 SEM 2

Assignment 2

You have two options to choose from. Please pick the one that interests you the most. Each earns a maximum of 35 marks.

Option 1: Building and Implementing a Python Code

Task:

Use a neural network - such as a shallow MLP, a GNN, or even a GAN - to predict the band gap of a compound based on descriptors like composition or physical properties (e.g., density, formation energy).

Steps to Consider:

•     You may use the materials dataset provided with this assignment.

•     Feel free to modify the dataset if needed (e.g., by adding features, including additional data, or selecting a subset).

•     You  can use AI tools  (e.g., ChatGPT,  DeepSeek, Gemini, Co-pilot) to  help generate, debug, or improve your code. However, please acknowledge their use,  and  remember  that  these  tools  can  make  mistakes  or   produce incomplete code. You’re responsible for verifying that each step aligns with your objectives.

•     Train/test your network on the band gap regression problem.

•     Visualize the distribution of predicted vs. actual band gaps, and discuss any limitations.

Important Note:

Our  main  goal  here  is  not  to  produce  perfect  code  or  a  fool  proof  band gap predictor.  Your  strength  lies  in  your  materials  science  expertise,  so  focus  on applying your domain knowledge to design a model that’s appropriate for this task. Treat AI tools as a technical assistant that may not fully understand what you are trying to achieve.

Comments in Your Code:

•     Include   thought-process   comments   explaining  why  you   chose  certain parameters or models, any optimization considerations and other decisions, also shortcomings or how you might improve the approach further.

Evaluation:

•     Your reasoning and logic will be the primary basis for evaluation, so ensure your  ideas  and  insights  are  clearly  expressed  in  your  comments  and discussion.

o  Logical reasoning (~ 20 marks)

o  Accuracy of code & implementation (~10 marks)

o  Output (~5 marks)

Option 2: AlphaFold

Background:

AlphaFold - particularly AlphaFold2 from DeepMind - is a ground-breaking deep learning system that predicts a protein’s 3D structure from its amino acid sequence. It gained major recognition in 2020–2021 by outperforming all previous methods in the CASP (Critical Assessment of protein Structure Prediction) competition and was honoured with the 2024 Nobel Prize in Chemistry.

Task:

Conduct a literature survey to explore how AlphaFold actually works - both the ML- based and non-ML techniques that helped crack the longstanding protein folding challenge. Then, compile a report that:

•     Explains the problem of protein folding and the core challenges

•     Outlines how AlphaFold overcame these challenges

•     Breaks down the computation methods / process

•     Uses pictorials, graphs, or other visuals to clarify the mechanism

You may use AI tools to aid your research, but do not copy text directly from them and acknowledge their use. Remember, AI outputs can sometimes be inaccurate, so please double-check any information you include.

Evaluation:

•   There’s no fixed page limit, but as a rough guideline, 3 - 4 pages should be sufficient if you effectively capture and condense the model’s complexity (which will be challenging!). However, evaluation will focus on the depth of your  insight  into  the  inner  workings  of  the  model(s)  and  your  ability  to explain or illustrate them in a meaningful, clear way.

o Background (~5 marks)

o Motivations for and behind computational approaches (~5 – 10 marks)

o Insight into AlphaFold (~25 – 20 marks) 



联系我们
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 99515681 微信:codinghelp
程序辅导网!