首页 > > 详细

讲解 A34315 Number Theory讲解 Python语言

A34315

3Num 06 22498 Level H

LH Number Theory

3Num4 06 16214 Level M

LM Number Theory

May/June Examinations 2023-24

1. (a)  Determine the factors of 1—4√—2 in Z[ √—2].                                                                      [10]

(b)  Let α Z[ 2] and suppose that N(α ) is irreducible in Z.  Prove that α is irreducible in Z[ √ —2].                           [7]

(c)  Let R ⊆ C be a ring with the properties:

(P1)  Every non-zero non-unit element of R is a product of irreducibles.

(P2)  Whenever  α ∈ R and π and σ are non-associate irreducible factors of α , then πσ | α .

Answer the following.

(i)  Suppose that π , σ1 , . . . , σn R are irreducible and that π | σ1 ··· σn. Prove that π is associate to σj for some j.

(ii)  Prove that every irreducible in R is prime.

(iii)  State, without proof, what this implies about R.            [8]

2.        (a) Use the Euclidean Algorithm to determine all the solutions to

32x ≡ 20 mod 108.                   [10]

         (b) State and prove Fermat’s Little Theorem. [7]

(c)  Let p be a prime number and let R = { 1, . . . , p − 1 }. For any d ∈ N and a R let

V(d) = { a R | a xd mod p for some x R } and

Sa(d) = { x R | xd a mod p }.

Suppose that d N and let h = hcf(d , p 1).

(i)  Show that S1(h) S1(d).

(ii)  By considering the equation dx h mod p − 1, show that there are non-negative integers A and B such that

dA = h+B(p 1).

(iii)  Use (ii) to show that S1(h) = S1(d).

(iv)  Show that  |Sa(d)| = |S1(d)| for all a V(d).

(v)  Show that if v V(d), then

v h/p1 1 mod p.

Deduce that |V(d)| ≤ h/p−1.

(vi) Using what you have proved, show that |S1(d)| = h and |V(d)| = h/p−1 .         [8]

3. (a)      (i)  State Gauss’ Law of Quadratic Reciprocity and use it to evaluate the following Leg- endre symbols:

(ii)  Let p be a prime number with p ≡ ±2 mod 5.  Use Gauss’ Law of Quadratic Reci- procity to prove that

[10]

For the remainder of this question, we work in the ring

Z[5 ] = { a+b5 | a, b Z }.

Recall that Z[5] possesses a conjugate function defined by

a+b √5 = a−b √5

for all a, b ∈ Z.

Define a sequence r1, r2 , . . . by

r1 = 18    and ri+1  = ri(2) —2 for all i ≥ 1.

Finally, let

τ = 2− √5.

(b)     (i)  Let p be a prime number with p ≡ ±2 mod 5. Prove that

αp ≡ α mod p

for all α Z[ 5 ].

(ii)  Prove that

ri = τ2i + τ2i

for all i ≥ 1.          [7]

(c)  Let n ∈ N, n ≥ 3 and set

M = 2n 1.

Assume that

rn 1 ≡ 0 mod M.

Assume further that q is a prime number with

q | M and q ≡ ±2 mod 5.

(i)  By considering τ2n1  + τ2n1, prove that τ2n ≡ —1 mod q and determine the order of τ modulo q.

(ii)  Using (b)(i) or otherwise, prove that M is a prime number.       [8]

4. (a)  Let R be a UFD and π ∈ R an irreducible.

(i)  Let α ∈ R\{ 0 }. What is the definition of ordπ (α )?

(ii)  Let α , β ∈ R\{ 0 } and suppose that γ is a highest common factor of α and β . State and prove the formula connecting ordπ (γ) , ordπ (α ) and ordπ (β).          [7]

(b)  Let x and y be integers that satisfy

y3 = x2 +8.

Work in the ring Z[√−2], let π = √−2 and let γ be a highest common factor of

x+2 √−2 and x−2 √−2.

(i)  Prove that γ is associate to πr for some integer r ≥ 0.

(ii) Using (a) or otherwise, prove that r is a multiple of 3 and then that y 3/π 2r is the cube of an element of Z[√−2].

(iii) Prove that x+2 √−2 is the cube of an element of Z[√−2].

(iv) Determine the possibilities for x and y.

(c)  Let p > 25 be a prime number. Show that the number of integer solutions to

yp = x2 +8

is at most p -3.                                                           [8]



联系我们
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 99515681 微信:codinghelp
程序辅导网!