首页 > > 详细

辅导 DATA9001 Fundamentals of Data Science - 2025辅导 C/C++语言

DATA9001 Fundamentals of Data Science - 2025

General Course Information

Course Code :  DATA9001

Year :  2025

Term :  Term 2

Teaching Period :  T2

Course Details & Outcomes

Course Description

This course provides a broad overview of Data Science as a platform. for further studies in Data Science and an understanding and appreciation of Data Science in the modern world.

Students will study the fundamentals of Data Science as it is applied in Computer Science, Economics, and Mathematics and Statistics. They will be introduced to topics such as databases, data analytics, data mining, Bayesian statistics, statistical software, econometrics, machine learning and business forecasting.

The content of this course will be delivered via weekly live lectures with academics from three different Schools: The School of Mathematics and Statistics, the School of Economics and the School of Computer Science and Engineering. These concepts will be further explored through a series of tutorials/workshops.

Course Aims

The aim of the course is to provide a broad overview of probability theory, different statistical methods, regression analysis, and modern data science techniques. This course will provide a platform. for further studies in Data Science and Machine Learning.

Course Learning Outcomes

Course Learning Outcomes

CLO1 : Apply probability rules in a given setting to calculate key quantities.

CLO2 : Use key theoretical tools to explore the properties of random variables.

CLO3 : Apply key methods of statistical inference in applied settings.

CLO4 : Use R/RStudio to perform statistical computations and simulations.

CLO5 : Apply various data visualisation tools, perform. regression analysis and draw causal inference from data.

CLO6 : Apply fundamental data science techniques and tools, including machine learning,

Naïve Bayes classification, Decision trees, K-NN, unsupervised learning and neural networks.

Course Learning Outcomes

Assessment Item

CLO1 : Apply probability rules in a given setting to calculate key quantities.

Statistics Assignment

Final Exam

CLO2 : Use key theoretical tools to explore the properties of random variables.

Statistics Assignment

Final Exam

CLO3 : Apply key methods of statistical inference in applied settings.

Statistics Assignment

Final Exam

CLO4 : Use R/RStudio to perform. statistical computations and simulations.

Statistics Assignment

Final Exam

CLO5 : Apply various data visualisation tools, perform

regression analysis and draw causal inference from data.

• Economics Assignment

Final Exam

CLO6 : Apply fundamental data science techniques and tools, including machine learning, Naïve Bayes

classification, Decision trees, K-NN, unsupervised learning and neural networks.

• Computer Science Assignment

Final Exam





联系我们
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 99515681 微信:codinghelp
程序辅导网!