首页 > > 详细

辅导 Mathematics讲解 迭代

Let  p  be an odd prime,  K  a finite extension of  \mathbb{Q}_p  with ring of integers  \mathcal{O}_K  and residue field  k = \mathcal{O}_K / p\mathcal{O}_K  (of characteristic  p ). Let  X  be a proper smooth algebraic variety over  \mathcal{O}_K , whose special fiber  X_k = X \times_{\mathcal{O}_K} k  is geometrically connected, and whose generic fiber  X_K = X \times_{\mathcal{O}_K} K  is an abelian variety with complex multiplication (CM).

Let  \ell \neq p  be another prime, and let  \rho: \text{Gal}(\overline{K}/K) \to \text{GL}_{2g}(\mathbb{Q}_\ell)  be the Galois representation induced by the  \ell -adic Tate module of  X_K , where  g = \dim X_K . Assume  \rho  is semisimple and its image is contained in a split torus (i.e., a "potentially abelian" representation).

1. Prove that there exists a crystalline representation  \rho_{\text{cr}}  with Hodge-Tate weights  \{0, 1, \dots, 2g-1\}  associated to  \rho , and that its Fontaine-Laffaille module satisfies specific filtration conditions.

2. If  X_k  is supersingular, show that the eigenvalues of the Hecke algebra action on  H^1_{\text{et}}(X_{\overline{K}}, \mathbb{Q}_\ell)  are in bijection with embeddings of elements of some ring of integers of the CM field of  X  into  \mathbb{Q}_\ell .

3. Using the above results, explain how this Galois representation satisfies the local case of the Langlands program's conjecture relating Galois representations of abelian varieties to automorphic forms over non-archimedean local fields.

This problem lies at the intersection of arithmetic algebraic geometry, p-adic Hodge theory, and the Langlands programcore areas of modern research in number theory. It requires mastery of:

- Fontaine's rings ( B_{\text{cr}}, B_{\text{st}} ) and the classification of crystalline representations;

- The arithmetic of CM abelian varieties and the Galois action on their Tate modules;

- Deep connections between Galois representations and automorphic forms, particularly in local settings.

 

联系我们
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 99515681 微信:codinghelp
程序辅导网!