首页 > > 详细

辅导 GEOS2821, 2025. Major project scenario and details讲解 留学生Matlab编程

GEOS2821, 2025. Major project scenario and details

Overview

This document comprises two components.

The first part, starting on the next page, is the consultancy brief.  This describes the general scenario of the major report from the perspective of a brief given to consultants.

The second part describes the requirements more from the perspective of what you need to do.

Note that these are high level overviews.  More specific details are given in the lab instructions.

Consultancy Brief

Expansion of the Smiths Lake field station

2025

The University is investigating the expansion of facilities at the Smith’s Lake Field Station.  This is primarily for accommodation but advice will be appreciated on expansion of other existing uses.

Your company has been engaged to identify where any such expansion should take place.

You must identify a location or locations that will:

1.   Minimise any construction costs.

2.   Minimise the impact on any conservation issues at the site.

3.   Minimise the hazard from bushfires.

Further, any location must also be:

1.   Between 0.5 and 1 ha in area.  If you identify larger sites then they will need to be subdivided to the appropriate size.

2.   Further than 75 m from any swamps or wetlands.

3.   Within 600 m of existing powerlines.

4.   Within 1.6 km of Horse Point Road and its eastern extension beyond the field station.

At your discretion you may also provide advice regarding the aesthetic merits ofthe site or sites.

You are to document the processes used, both conceptual and technical, such that they can be repeated using our internally developed, closed-source geospatial analysis product (GAP). We are developing the GAP for application to a range of other sites so your documentation must be non-software specific as we do not have licenses for commercial software to verify processes.

To support the above, you must explain for a non-technical audience and using figures:

1.   The geospatial data structures used (e.g. raster and vector/feature), including their advantages and disadvantages for the nature of the task.

2.   How to combine such data using map overlay processes.

3.   Map projections and coordinate systems to identify the appropriate system.

4.   The creation of new data sets or modification of existing data sets.

The project must be completed in two stages.

Stage 1.

You are to develop a series of remote sensing products for the local area using remotely sensed data. You are to provide a set of processed image products and associated metadata.  Specific details are provided in a separate document.

Stage 2.

Implement a GIS-based analysis to identify the optimal location or locations for any expansion.  This will use some of the products from step one, in addition to other geospatial data sets.

The analyses that you implement in Stage 2 must be fully documented and any relevant interpretations and recommendations given.  Steps, including intermediate products, need to be clearly described.  You are to use a fuzzy logic framework, and demonstrate why it is a better approach than Boolean logic.

We are looking for good examples of maps that can be adapted and used as a template.  All maps must depict waterbodies and a consistent set of roads.  All maps must include legends, scale bars and north arrows.

A location diagram is required for the report.  It must include a false colour composite image of remotely sensed data for the area.

For further information please contact Shawn Laffan ([email protected]).

What does all the above mean for the remote sensing and major reports?

The preceding page is the formal description of the project and sets up the scenario from the perspective of a consultancy project.  The following provides more details about the major report from the perspective of the course and how you should approach it.

These are some additional points to note.

1.   The first stage of the consultancy scenario is the work you do for the remote sensing report.  It is to be done individually.

2.   The second stage of the consultancy scenario is the major report.  It is to be done in groups of two or three people (no more, no less).

3.   The marking criteria and expectations for the remote sensing report are provided on Moodle.

4.   You need to write the major report from the perspective of a professional consultant, not a student.

5.   The marking criteria and expectations for the major report have been given to you in the course

outline.  This document can be downloaded from the course Moodle site if you have misplaced it.

6.   You will be required to provide a subset of your data sets with the major report (details nearer the due date).

7.   The brief is written by the client to define the work completed by the consultant.  You are writing a report, not a brief.

To frame. the first two points another way, the analyses in this course consist of two main sections: (1) generation of a set of remote sensing data products, followed by (2) geospatial analyses to identify which location or locations are most suitable for expansion of the field station.

The overall process is summarised in flow chart form in Figure 1.

The notes below are general.  Specific details are given in the lab instructions, or need to be worked out by you based on what you learn in the course.

Initial references to the literature are given in the relevant lab instructions and the lecture notes.  Remember that you need at least ten peer reviewed geospatial references for the major report, plus other domain-specific non-geospatial references.

Collection and collation of input data sets

Key steps:

1.   Obtain data.

2.   Image interpretation and exploration (spectral profiles, image enhancements, vegetation index surfaces - all derived from the remote sensing report).

3.   Remote sensing image processing.

4.   Define coordinate systems and reproject into a common coordinate system (MGA zone 56), as needed, to ensure all layers are in a common coordinate system.

5.   Field survey of the fuel loads and land cover types around the field station.

Figure 1.  The overall flow of the major report.

Major report analyses

The main analysis has four principal parts: building cost, conservation value, fire hazard and their combination.  The first two represent conflicts given they are different possible uses for each location, while fire constrains the set of possible building locations.

The ideal site at which to locate the field station extension is one that minimises both the cost of building and any conflict with conservation values, while also minimising the potential risk from fire.  Aesthetic considerations can be incorporated into the analysis but are best done as a final ranking step once you have identified a smaller set of candidate sites.

The four parts of the analysis are each developed as separate models, for which overviews are given below. The level of detail for the final combination is very general since it follows similar principles as the preceding parts.

We are using a fuzzy logic framework for several of the parts to allow for the inherent uncertainty and error in the model parameters and input data.  The fire model is built first and then fuzzified, while the conservation, building and combination models are developed entirely within a fuzzy framework.

Keep in mind that these are landscape scale analyses.  Site specific analyses within any locations identified for building can be left to further work (i.e. you do not need to consider possible geotechnical issues at the building scale as they would be within the cell size we are using).

Fire model

This uses the MacArthur fire model. This is expressed as a series of equations and thus can be implemented using a GIS because each term in the equation is either spatially constant or its variation can be represented using a geographic layer.  It is then a case ofusing map algebra to implement it.

The fire model has the following components:

•   Fuel loads (derived from field surveys, land cover maps and phase 1 data sets).  These determine the rate of spread of fire across flat ground.

•    Slope gradient (from a digital elevation model - DEM).  This modifies the rate of spread to account for fire moving faster up steep slopes.

•   Any other factor such as temperature or wind direction is a spatial constant at the scale of this study which you can take from the instructions, or develop your own.

Conservation model

The conservation model consists primarily of developing zones with fuzzy boundaries around threatened flora and fauna, drainage lines and threatened or vulnerable ecological communities, and taller trees.  It is up to you to determine how far these zones should extend.  An important point is that these distances are inherently uncertain.  This is why we are using a fuzzy logic approach based on distance analysis, and not using a buffer tool that generates abrupt boundaries.

Building cost model

The building model consists entirely of identifying sites that are relatively less expensive for building.  Any issues of conservation that are not in the local environment plan do not need to be considered within this model.  They will be incorporated into the site selection when we combine the building and conservation models.

You need to identify locations that satisfy at least the following criteria:

•   Low slope gradient (derived from the Digital Elevation Model),

•   Close to existing vehicle access,

•   Not too far from normal voltage power lines.

As noted above, if you elect to calculate aesthetic factors then it is simpler to incorporate them after the final combination as a ranking criterion rather than as a model component.  The same can apply to incoming solar radiation, as the climate at the field site means that anywhere is suitable, so it is more useful as a relative measure of passive solar capacity.

The final combination

In the final combination you are attempting to identify a location that optimises the values of the preceding models but that also provides sufficient area to locate the field station expansion.  An isolated 10×10 m cell that is identified as having optimal conditions is too small to be of any use.  You need to target an area matching the criteria in the brief.

Remember that you are looking for sites that have a good building cost score, while also having a low fire hazard.  At the same time they must not be a location that is also of high conservation value.  This is a two- step process and need not be complex.  You first exclude any areas from the building model that have too  high a hazard, and then compare the remaining locations with the conservation model to identify areas with low conflict.

Once you have identified a set of potential building sites you need to identify those that are of the correct extent and rank them.  This will involve calculating areas.  This is inevitably an iterative process, so you will be running your models several times with different inputs and combination weightings.

You may even decide to present multiple scenarios, for example one where conservation is valued highly and one where it is not.

Site ranking

Once you have your set of candidate sites you can then rank them based on their characteristics such as shape, size and average slope.  You might also look for areas with better passive solar characteristics (using the DEM) or those with nice views and/or privacy (also derived from the DEM).

Additional details

Some additional points to remember when reading the brief and doing the project work:

•   People cause more problems than technology.

•   Everything changes faster than you would like e.g. user expectations.

•   Uncertainty is always with us.

•   Everything interacts with everything else.

•   Users often have very imprecise ideas of what they want - even if they say otherwise.

•   There is no single best solution.  Normally there are several equivalent or near-equivalent solutions, and it often depends on the perspective one takes.

•   If you encounter a problem then the chances are that someone else has already solved it, or has solved something similar.  You can leverage this.


联系我们
  • QQ:99515681
  • 邮箱:99515681@qq.com
  • 工作时间:8:00-21:00
  • 微信:codinghelp
热点标签

联系我们 - QQ: 99515681 微信:codinghelp
程序辅导网!